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Abstraci We present the q-deformed pan-bose oscillators associated with the (two-body) 
Calogem model. The y-deformed coherenc state is also constructed and its resolution of unity 
is demonstrated. 

1. Introduction 

q-deformation [l] of the classical Lie algebra has been an active research area recently. For 
q-deformation of su(1, I ) ,  with which we are concerned in this paper, in the literature one 
can find its realizations in terms of q-oscillators 12,111 and q-para-bose oscillators 131. For 
q-deformed osp(l.2n) algebra, we refer to [4]. 

Very recently it was demonswated that there is an oscillator analogy [5] for the Calogero 
model [61, although differential operator realization [7] of su(1, 1) has been known for a 
long time. This recently demonstrated oscillator is not the ordiniuy harmonic oscillator, in 
the sense that it contains exchange operators in the commutation relations. Therefore. it 
might be natural to study the q-deformation of the modified oscillator, which will expose 
different behaviour from that of the ordinary oscillators. 

We will confine ourselves to the two-body Calogero model since this is the simplest non- 
trivial case. The modified oscillator arises from the relative motion part, which contains the 
inverse square interation. The modified oscillator is, however, not a new one: this oscillator 
realises para-bose algebra [8] and becomes a para-bose oscillator. This kind of oscillator 
has already been studied [9]  with the introduction of a parity operator (exchange operator in 
the two-body case). It is also known that the para-bose algebra is in general isomorphic to 
osp(l, 2n) super-algebra [IO]. On the other hand, q-deformation of this oscillator system 
has not been studied thoroughly as far as we are aware. In this paper, we will present the 
q-oscillator realization such that it encompasses the Calogero model as well as the para-bose 
oscillator and construct its coherent state with resolution of unity. 

This paper is organized as follows. In section 2, we give a brief review of the q- 
deformation of su(1, l),  and we give a realization of the su,r(l ,  1) generators associated 
with the (two-body) Calogero model in terms of the q-deformed modified oscillators. The 
realization looks the same as that in the standard q-oscillators [ I  I ]  except for the appearance 
of the exchange operator (see (27)-(29)). These q-deformed modified oscillators provide an 
explicit operator realization of q-para-bose or osp,z( 1,2) super-algebra. A slightly different 
q-deformation which covers the modified oscillator has also been considered recently in [ 121. 
In section 3, we construct the q-deformed coherent state for the para-bose oscillator. We 
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demonstrate the resolution of unity for the q-deformed coherent state following the method 
of [I31 given for the undeformed para-bose coherent state. This is the generalization of that 
of the q-deformed osp(1,Z) superalgebra considered in [ 141. In section 4, a summary of 
OUT results and some remarks are given. 
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2. g-deformation of the para-bose oscillator 

su(1, I )  satisfies the commutation relations 

[KO, K*] = fK* IK+, K-I = -2Ko 

and the Casimir operator is given as 

c = &(KO - I )  - K+K-. 
Its q-deformation, suqz(l ,  I). is given 121 as 

[io, k*] =if* [E+, E-] = -[Zko],* (3) 

where [XI, 

an ansatz [15]: 

( p x  - ~ - ~ ) / ( p  - p-'1. 
To find a realization of the suqi(l, 1) in terms of the generators of su(1, 1) we make 

Then to satisfy the the q-deformed algebra (3), we have a recursion relation 

where 

G(K0) = F*(Ko)K+K- = F2(Ko)((Ko(Ko - I )  - C )  (6) 
and C is the Casimir operator given in (2). 

To find G(Ko), we first note that F ( K 0 )  in (4) should be a non-singular operator on the 
Hilbert space. Therefore, for the vacuum defined as K-]vac) = 0 and Kolvac) = kolvac), 
we have 

(7) 
to make the operator consistent. From the recursion relation (5) and the initial condition 
(7). we have G(K0) = $.KO - 2koJq[2Ko + 2k0 - 21, and this leads to the F ( K 0 )  as 

C(K0 = kJ) = 0 

In this case the q-deformed Casimir operator is given as 

2 = Lkolq2[ko - l l q 2  - k+k- = Ikol,:[kJ - 1],2. (9) 
Let us apply this formalism to the ordinary harmonic oscillator system. This system is 

described by the creation and annihilation operators a = (x + ip)/./z, a+ = (x  - ip)/&. 
su( l ,  1) generators are given as KO = i ( n  + A ) ,  K+ = $(a+)* and K- = l a  z. where 
n = a'a. The Casimir operator is given as C = -&. This system has two different 
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and $, respectively. We find that F ( K 0 )  in (8) is the same representations whose ko is 
for both cases: 

Therefore, the generators of su,z(l. 1) are given as 

The q-deformed Casimir operator is given as ? = -[&2[$19z. One can realize the algebra 
su,r(l, 1) in terms of the q-deformed oscillator [2, 111. From (Il), we get 

where 

For other represenatation of su(1, 1) we consider the relative motion part of the two- 
particle Calogero model. The two-particle Calogem model is given as 

If we rescale xi --t pxi and pi -+ / (h lp )p i ,  where p = +, then we have the 
Hamiltonian 

where A = mg/h 2 2 -i. Restricting to the relative motion part only and denoting 
X I  - xa = 2x and p1 - pz = p such that [ x ,  p] = i, we have, in units of ho, 

The other su(1, I)  generators are given as [71 

(17) 

The Casimir operator has the value $A - &, which differs from that of the harmonic 
oscillator system (A = 0). Now q-deformed generators are obtained if we put 

[ 2 ~ ~  - 1 - & Z I [ ~ K ~  - 1 +m9 
F ( K o )  = 

(2Ko - 1 - (2Ko - 1 + ’ 

For the Calogero model it is also possible to realize su(1,l) in terms of a modified 
oscillator system by exploiting an exchange-operator formalism [SI. We will present the 
q-deformed version of the system, paying attention to the role of the exchange operator. 

Let us introduce notations. 
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where 1 is a real parameter to be determined in terms of A in the Calogero model. M is an 
exchange operator in the two-body system and plays the role of the parity operator in this 
reduced one-body system, i.e. 

M p  = -pM MX = -xM M = M+ = M - '  , (20) 
Next define ladder operators A and A+ as 

I 1 
A = -(x + in) A + - - - x  - A( - in )  A 

Then the modified Hamiltonian is defined as 

= -(A'A + A A  
4 

One may realize su(1,  1) algebra just as in the harmonic oscillator case by identifying 

KO = ' ( N  2 + 4) K+ = +(A')* K- = ' A 2 .  2 (7-3) 
As in a harmonic oscillator system, we define KO in terms of N .  The Casimir operator is 
given as C = -& + $ l ( !  - M ) .  One may easily check the algebraic relations if one uses 
the commutation relations 

I N ,  At] = At [ N ,  A] = - A  [ A ,  At] = 1 +21M (24) 
which are obtained from their definitions. 

The Hilbert space is obtained by applying the ladder operator K+ successively on 
the vacuum state which is annihilated by K-. On the other hand, the parity operator M 
commutes with KO and K+. Therefore, M behaves like a number as far as this su(1, 1) 
is concerned. One can obtain the eigenstates of the two-boson (two-fermion) Calogero 
system by restricting the Hilbert space of KO to a subspace of symmetric (anti-symmetric) 
eigenstates with A identified as L(I - I) (L(I + I)). 

To realize the generators of su,~(I, 1) in (4) in terms of the q-deformed modified 
oscillator, we note first that ko for one representation can be obtained from the vacuum 10) 
defined by AIO) = 0, which gives ko = 4 + $M. The vacuum for the other reprentation, 
A+IO) gives ko = a - $M. Referring to (8). we have 

IN - 1M],[N t 1M - 11, 
F(Ko)= J ( N  - I M ) ( N + I M -  1) 

independent of the representations. ko is no longer a number when the creation and 
annihilation operator At, A are present. The Casimir operator is given as 

Now we define the q-deformed generators in (4) in terms of q-deformed oscillators as 

ko E KO b+ E -(A:)* 1 %- = -(A,) 1 2 

[21, I210 
Then equations (23) and (25) give 

They satisfy the relations 
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q-deformed operators given in (27), (28)  constitute a representation of q-deformed osp( 1,Z) 
super-algebra. One may use this explicit form to calculate the Casimir operator of 
osp,z( 1,Z): 

e = [Ko],z[Ko - lIq2 - [A,. A:] 
,z cosh 2q KO 

where q = e'J and (30) reduces to -& + i l z  when q = 1 

3. q-deformed coherent states 

In this section we will construct the coherent states for the q-deformed modified oscillator 
obtained above and demonstrate the resolution of unity. Let us begin by summarizing 
the Fock space representation of the q-para-bose system. Recalling that the Fock space is 
unchanged under the q-deformation, we label them as In), R = 0, 1 ,2 ,  , . . . The vacuum 10) 
is defined by 

AIO) = O  MIO) =IO)  (31) 
and therefore, from (22)-(24), 

(32) 
1 1  
4 2  

KolO) = PlO) - + - NIO) = 110). 

Since KO is positivedefinite, it is clear that 1 3 - 5 .  The orthonomalized ket In) is given 
as 

1 1 In) = -AfnlO) = -Arlo)  
m & (33) 

where - 
C, = n +f (1  - (-1)") C, = [C"], (34) 

and we use a notation f n !  = n:=, A ,  and O! = 1. We also note for later convenience, 

AJln) = &In + 1) A&) = G I n  - 1) (35) 
N l n )  = (n t L)ln) Mln)  = (-l)"]n) . (36) 

We recall that the set (In)} forms a single irreducible representation of osp(1,Z) algebra 
with Casimir C(osp(1,Z)) = -A + ifz. On the other hand, ( 1 2 ~ ) )  and (12p + 1)) for 
p = 0,1,2, .  . . form two distinct, parity-even and -odd irreducible representations D. and 
Da+i of su(l.1) algebra. respectively. We will label the eigenstates as Ik, p )  : 

It is simple to show from (23), (27), and (33)-(37), 
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where 
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d,, = p(p + 2 - 1) & = [ p l , z [ p  + 2k - 1 1 q 2 .  

Aql~)  = ZIZ) (40) 

(39) 
We will use the definition of the unnormalized q-coherent state lz) for the q-para-bose 

oscillator as 

where z is a complex number. Then Iz) is given by 

We can associate with each normalizable ket I@), 
m m 

I@) = IMnl@) = c @ n W  
n=O n=0 

an entire function @ ( I )  defined as 

Combining (40) and (43). we get 

(z*lA:I@) = z(z*l@) = z @ ( z )  
which shows that A: acts as a multiplication by z in the Bargmann space. Taking 14) as 
A,[+) in (44), and using (29), 

(45) z ( z * I A ~ I $ ~ )  = (~'lA,fAql@) = k*I[N - W,lrL). 
Using (34), (36), and (43), equation (45) shows that A, acts as an operator (q =e'') 

Here, the parity operator M acts as 

M $ ( z )  = $r(-z) (47) 
and the q-derivative and q-shift operators are given as usual by 

Tq$r(z) = $r(qZ) 

We need a resolution of unity to complete the q-coherent state descriptions. It will 
provide a natural inner product for the Bargmann space, under which A, and A: are 
Hermitian conjugates mutually. To this end, we proceed in an analogous way to that taken 
in [13] for the para-bose coherent states. The essence of the method lies in finding the 
correct measure of lz) coherent states by using those of the su(1, l )  coherent states. 

Let us introduce the ~ ~ ~ ~ ( 1 . 1 )  coherent states as in [13, 161 (for further discussions on 
su,(2), su,(l,l) coherent states, see [17]): 
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where o is a complex number and other notations are given in (37)-(39) and satisfy 
k-10; k) = o10; k ) .  (51) 

For a general ket lg} in Dk, 

we may associate a complex function g ( w )  defined as 
m 

g, g(0) (Of; k l g )  = -op. 
p=o fi (53) 

The action of suqz(l, 1) generators on g(w)  is represented as 

(54) 
d 

d o  
K o + k + o -  

(55) 
Tqi + T,;' k- -+ [2k],? l 2  i+ -+ 0 

The q-coherent state lz) in (41) can be written in terms of IO; 6) and lo; ,5 + $) 
compactly as 

with o being identified as 

22 

PI, 
U = -  (57) 

with the help of (33H39). Therefore, @(z) in (43) is decomposed into even and odd parts: 

@ ( z )  = @+(z)  + @-(z)  
@ + ( z )  = (U*; PI@) = @I(4 (58) 

We remark in passing that if we express @ ( z )  as a column vector 

( 2;:; ) 
then the operators are realized by matrix operators as follows (remembering that A, and 
A: change the parity): 

f+ and KO are given as a diagonal matrix in this basis and their explicit form can be 
obtained using the relations in (27). A similar consideration has been done in [I81 especially 
in connection with q-special functions. 
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To demonstate the resolution of unity for 12). suppose we have obtained a resolution of 
unity for [o; k ) ( k  = 0 or 0 + f )  coherent states in (SO), namely 

m 
/dz(w; q2)Gk(bl) lw;  k)(W; kl = 

Dl 

Ik,  P ) ( k ,  PI = I (61) 
P=Q 

where 

(62) 

and d([ol; q )  is a standard q-integration [19, 201 and d0 is an ordinary integration from 0 
to 2n. Then. using the definition of an inner product in Dk, 

d2(w q 2 )  = ~d([oI* ;  q2)d6’ = L l o [ d ( l o l ;  q)d8 
2 

m 

k’lg) = C $ g p  = /d% qz)ciWl)s”b)g(o) (63) 
p=0 

where g(w) ,  g’(o) are associated with Is), 1s’) as in (52)-(53), we have 

(@‘I@) = /d%; q2)  [ G p ( l o l ) @ ~ ( w ) @ ~ ( ~ )  + Gp+j(lwl)#(@)dz(w)] (64) 

for arbitrary two kets I@) and I@‘) in the total Fock space by referring to (37) and (58) .  
In equation (64), we make the change of variable as in (57) and take into account that w 
covers the complex plane twice while z covers it once: 

Collecting (58), (64) and (65) and observing I@), I@‘) are arbitrary, we end up with the 
resolution of unity for Iz) coherent states: 

Thus, the problem to prove the resolution of unity for lz) coherent states reduces to finding 
Gk(l0 l )  satisfying (61). 

The diagonal element of (61) in [ k ,  p )  basis gives 

where we have put lo[ = U ,  and &integration is done. To find G&), we recall the 
undeformed one, Gio)(u) [131, 

where K d x )  is a modified Bessel function. 

we need G i ( u )  and G ~ ( u ) .  Fork = a. equation (67) becomes 
For the qdeformed case, let us consider first the simplest p = a(f = 0). In this case 



q -deformed oscillator 2819 

where we use [Zx ] ,  = [ 2 ] r [ ~ ] q 2  and [2p ] , !  
q-exponential function defined as 

@,[j],. To solve this, we employ the 

for U > -I 
otherwise 

e,(u)  

where -b is the largest zero of e,,(u). The integration representation of the q-factorial is 
given as 

lmd(w;q)eq( -w)wm= [ m ] , ! .  (71) 

From this we get 

Likewise fork = i, we have 

(73) 

The resolution of unity, equation (66) is reduced to that of the q-coherent states of the 

PI, 
G3/4(~) = --pq(-[21,u). 

q-oscillator [19, 201 in this case: 

In fact, lz) coincides with the usual q-coherent states as can be seen in (34) and (41), 

This corresponds to the result of [ 141, 'two-component' coherent states representations of 
the q-deformed osp(1,Z) superalgebra realized in terms of the q-oscillators (lo; k = a )  and 
zlw; k = $) are denoted as 11z)l and I l z ) ~ ,  respectively). 

Let us consider case of para-bose oscillator with I = I ,  2 , 3 . .  . . Then we may put 
2k - 1 = n + 4 such that n = 0, 1 , 2 , .  . . in (67). We rewrite the (67) as 

To find Ga(u) we use the integration representation of the q-beta function: 

where 

Now using the formulae for q-factorial and q-beta we have G ~ ( u )  as 



2820 

where kn+p(x) is the q-deformed modified Bessel function in integration represention for 
half-odd integer U: 
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I I  Recalling ,9 = + 21, for 1 = n + I = I ,  2,3,. . . , we have the resolution of unity in 
(66) written as 

+~k,++(1zI2) - ~nt#(lz12)llz)(-zl]~ (81) 

Similarly for the case with 1 = 2, I, 7 . .  . , we put 2k - I = n where n = 0, I .  2, . . . in 1 3 5  

(67). We may rewrite (67) as 

Using the integration representation of the q-factorial in (71) twice, we have G&) as 

where & ( x )  is the q-deformed modified Bessel function in integration represention for 
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showing that the q-coherent states are not orthogonal in each Dp or Dp+;. Using the above 
equations (86H88) and (563-(57), the normalized 12) is given as 

4. Summary and remarks 

We have found a q-deformed version of para-bose oscillator associated with the two-body 
Calogero model. It realizes the su+( l ,  1) algebra whose form looks the same as in the 
standard q-oscillator case. We especially note that the q-oscillator A, and A: are invariant 
under q -+ q - ] ,  in contrast with those considered in [12], while they share the same Fock 
space. 

The q-coherent states of the para-bose oscillators are also constructed and the resolution 
of unity is demonstrated for order 21 + 1 = I, 2,3 ... employing the integration 
representation of the q-deformed exponential and q-deformed beta function. For non- 
integral values of 21 + 1, we note that the proof for the resolution of unity may need 
carefully developed q-special functions. 

Also, we remark that for more than the two-body Calogero model, the q-deformation 
does not go parallel with that of the two-body case. The method given in the text is not 
generalized straightforwardly to the many-body case. In addition, the equivalent oscillators 
for the N(> 3)-body Calogero model [5] do not satisfy the para-bose algebra. Therefore, 
the q-deformation for the many-body case seems quite a challenging problem. 

Note added. When we finished this article, A J Macfarlane sent us the paper 1211 which 
interprets the modified oscillator (Calogerc-Vasiliev oscillator) as the para-bosonic one, as 
we pointed out in section 2. 
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